http://ojs.math.nsc.ru/index.php/daor/issue/feedDiscrete analysis and operations research2019-10-01T08:45:50+00:00Пузынина Наталья Михайловнаdiscopr@math.nsc.ruOpen Journal Systems<p>Журнал «Дискретный анализ и исследование операций» основан в 1994 г. Учредители — Сибирское отделение РАН, Институт математики им. С. Л. Соболева СО РАН. До 2008 года журнал выходил в двух сериях. <br>В журнале публикуются оригинальные статьи, содержащие теоретические результаты в области дискретного анализа и исследования операций, статьи прикладной направленности, представляющие интерес с точки зрения практического приложения полученных результатов, а также обзорные статьи по данной тематике, краткие научные сообщения.</p>http://ojs.math.nsc.ru/index.php/daor/article/view/12Reduction of a minimization problem of a separable convex function under linear constraints to a fixed point problem2019-10-01T08:32:05+00:00Александр Юрьевич Крылатовa.krylatov@spbu.ru<p>The paper is devoted to studying a constrained nonlinear optimization problem of a special kind. The objective functional of the problem is a separable convex function whose minimum is sought for on a set of linear constraints in the form of equalities. It is proved that, for this type of optimization problems, the explicit form can be obtained of a projection operator based on a generalized projection matrix. The projection operator allows us to represent the initial problem as a fixed point problem. The explicit form of the fixed point problem makes it possible to run a process of simple iteration. We prove the linear convergence of the obtained iterative method and, under rather natural additional conditions, its quadratic convergence. It is shown that an important application of the developed method is the flow assignment in a network of an arbitrary topology with one pair of source and sink.<br>Bibliogr. 10.</p>2019-10-01T00:00:00+00:00Copyright (c) 2018 http://ojs.math.nsc.ru/index.php/daor/article/view/10The Hamming distance spectrum between self-dual Maiorana–McFarland bent functions2019-10-01T08:22:18+00:00Александр Владимирович КуценкоAlexandrKutsenko@bk.ru<p>A bent function is self-dual if it is equal to its dual function. We study the metric properties of the self-dual bent functions constructed on using available constructions. We find the full Hamming distance spectrum between self-dual Maiorana–McFarland bent functions. Basing on this, we find the minimal Hamming distance between the functions under study.<br>Bibliogr. 22.</p>2018-03-01T00:00:00+00:00Copyright (c) 0 http://ojs.math.nsc.ru/index.php/daor/article/view/11On the complexity of multivalued logic functions over some infinite basis2019-10-01T08:28:06+00:00Вадим Васильевич Кочергинvvkoch@yandex.ruАнна Витальевна Михайловичavmikhailovich@gmail.com<p>Under study is the complexity of the realization of k-valued logic functions (k≥3) by logic circuits in the infinite basis consisting of the Post negation (i.e., the function (x+1) mod k) and all monotone functions. The complexity of the circuit is the total number of elements of this circuit. For an arbitrary function f, we find the lower and upper bounds of complexity which differ from one another at most by 1 and have the form 3log3 (d(f)+1)+O(1), where d(f) is the maximal number of the decrease of the value of f taken over all increasing chains of tuples of values of the variables. We find the exact value of the corresponding Shannon function which characterizes the complexity of the most complex function of a given number of variables. <br>Illustr. 4, bibliogr. 24.</p>2019-10-01T00:00:00+00:00Copyright (c) 2018 Discrete analysis and operations researchhttp://ojs.math.nsc.ru/index.php/daor/article/view/9Tree-like structure graphs with full diversity of balls2019-10-01T08:45:49+00:00Александр Андреевич Евдокимовevdok@math.nsc.ruТатьяна Ивановна Федоряеваfti@math.nsc.ru<p>Under study is the diversity of metric balls in connected finite ordinary graphs considered as a metric space with the usual shortest-path metric. We investigate the structure of graphs in which all balls of fixed radius i are distinct for each i less than the diameter of the graph. Let us refer to such graphs as graphs with full diversity of balls. For these graphs, we establish some properties connected with the existence of bottlenecks and find out the configuration of blocks in the graph. Using the obtained properties, we describe the tree-like structure graphs with full diversity of balls. <br>Illustr. 8, bibliogr. 22</p>2019-10-01T00:00:00+00:00Copyright (c) 2018 Discrete analysis and operations researchhttp://ojs.math.nsc.ru/index.php/daor/article/view/7Rectifier circuits of bounded depth2019-10-01T08:45:50+00:00Игорь Сергеевич Сергеевisserg@gmail.com<p>Asymptotically tight bounds are obtained for the complexity of computation of the classes of <span id="MathJax-Element-1-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy="false">)</mo></math>"><span id="MathJax-Span-1" class="math"><span id="MathJax-Span-2" class="mrow"><span id="MathJax-Span-3" class="mo">(</span><span id="MathJax-Span-4" class="mi">m</span><span id="MathJax-Span-5" class="mo">,</span><span id="MathJax-Span-6" class="mi">n</span><span id="MathJax-Span-7" class="mo">)</span></span></span><span class="MJX_Assistive_MathML" role="presentation">(m,n)</span></span>-matrices with entries from the set <span id="MathJax-Element-2-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #22453f; font-family: Verdana, Geneva, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow class="MJX-TeXAtom-ORD"><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>&#x2026;</mo><mo>,</mo><mi>q</mi><mo>&#x2212;</mo><mn>1</mn></mrow></math>"><span id="MathJax-Span-8" class="math"><span id="MathJax-Span-9" class="mrow"><span id="MathJax-Span-10" class="texatom"><span id="MathJax-Span-11" class="mrow"><span id="MathJax-Span-12" class="mn">0</span><span id="MathJax-Span-13" class="mo">,</span><span id="MathJax-Span-14" class="mn">1</span><span id="MathJax-Span-15" class="mo">,</span><span id="MathJax-Span-16" class="mo">…</span><span id="MathJax-Span-17" class="mo">,</span><span id="MathJax-Span-18" class="mi">q</span><span id="MathJax-Span-19" class="mo">−</span><span id="MathJax-Span-20" class="mn">1</span></span></span></span></span><span class="MJX_Assistive_MathML" role="presentation">0,1,…,q−1</span></span> by rectifier circuits of bounded depth <span id="MathJax-Element-3-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>,</mo></math>"><span id="MathJax-Span-21" class="math"><span id="MathJax-Span-22" class="mrow"><span id="MathJax-Span-23" class="mi">d</span><span id="MathJax-Span-24" class="mo">,</span></span></span><span class="MJX_Assistive_MathML" role="presentation">d,</span></span> under some relations between <span id="MathJax-Element-4-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #22453f; font-family: Verdana, Geneva, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math>"><span id="MathJax-Span-25" class="math"><span id="MathJax-Span-26" class="mrow"><span id="MathJax-Span-27" class="mi">m</span></span></span><span class="MJX_Assistive_MathML" role="presentation">m</span></span>, <span id="MathJax-Element-5-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #22453f; font-family: Verdana, Geneva, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>"><span id="MathJax-Span-28" class="math"><span id="MathJax-Span-29" class="mrow"><span id="MathJax-Span-30" class="mi">n</span></span></span><span class="MJX_Assistive_MathML" role="presentation">n</span></span>, and <span id="MathJax-Element-6-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #22453f; font-family: Verdana, Geneva, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>"><span id="MathJax-Span-31" class="math"><span id="MathJax-Span-32" class="mrow"><span id="MathJax-Span-33" class="mi">q</span></span></span><span class="MJX_Assistive_MathML" role="presentation">q</span></span>. In the most important case of <span id="MathJax-Element-7-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #22453f; font-family: Verdana, Geneva, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi><mo>=</mo><mn>2</mn></math>"><span id="MathJax-Span-34" class="math"><span id="MathJax-Span-35" class="mrow"><span id="MathJax-Span-36" class="mi">q</span><span id="MathJax-Span-37" class="mo">=</span><span id="MathJax-Span-38" class="mn">2</span></span></span><span class="MJX_Assistive_MathML" role="presentation">q=2</span></span>, it is shown that the asymptotics of the complexity of Boolean <span id="MathJax-Element-8-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #22453f; font-family: Verdana, Geneva, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo stretchy="false">)</mo></math>"><span id="MathJax-Span-39" class="math"><span id="MathJax-Span-40" class="mrow"><span id="MathJax-Span-41" class="mo">(</span><span id="MathJax-Span-42" class="mi">m</span><span id="MathJax-Span-43" class="mo">,</span><span id="MathJax-Span-44" class="mi">n</span><span id="MathJax-Span-45" class="mo">)</span></span></span><span class="MJX_Assistive_MathML" role="presentation">(m,n)</span></span>-matrices, log <span id="MathJax-Element-9-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #22453f; font-family: Verdana, Geneva, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; text-decoration-style: initial; text-decoration-color: initial; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>=</mo><mi>o</mi><mo stretchy="false">(</mo><mi>m</mi><mo stretchy="false">)</mo></math>"><span id="MathJax-Span-46" class="math"><span id="MathJax-Span-47" class="mrow"><span id="MathJax-Span-48" class="mi">n</span><span id="MathJax-Span-49" class="mo">=</span><span id="MathJax-Span-50" class="mi">o</span><span id="MathJax-Span-51" class="mo">(</span><span id="MathJax-Span-52" class="mi">m</span><span id="MathJax-Span-53" class="mo">)</span></span></span><span class="MJX_Assistive_MathML" role="presentation">n=o(m)</span></span>, log <span id="MathJax-Element-10-Frame" class="MathJax" style="display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 12px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mi>o</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></math>"><span id="MathJax-Span-54" class="math"><span id="MathJax-Span-55" class="mrow"><span id="MathJax-Span-56" class="mi">m</span><span id="MathJax-Span-57" class="mo">=</span><span id="MathJax-Span-58" class="mi">o</span><span id="MathJax-Span-59" class="mo">(</span><span id="MathJax-Span-60" class="mi">n</span><span id="MathJax-Span-61" class="mo">)</span></span></span><span class="MJX_Assistive_MathML" role="presentation">m=o(n)</span></span>, is achieved for the circuits of depth 3.<br>Illustr. 1, bibliogr. 11.</p>2019-10-01T00:00:00+00:00Copyright (c) 2018 Discrete analysis and operations research